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Abstract

A system for classifying and quantifying entanglement in spin 1/2 pure states is
presented based on simple images. From the image point of view, an entangled
state can be described as a linear superposition of separable object wavefunction
�O plus a portion of its own inverse image. Bell states can be defined in this
way: � = 1/

√
2(�O ± �I). Using the method of images, the three-spin 1/2

system is discussed in some detail. This system can exhibit exclusive three-
particle ν123 entanglement, two-particle entanglements ν12, ν13, ν23 and/or
mixtures of all four. All four image states are orthogonal both to each other
and to the object wavefunction. In general, five entanglement parameters
ν12, ν13, ν23, ν123 and φ123 are required to define the general entangled state. In
addition, it is shown that there is considerable scope for encoding numbers, at
least from the classical point of view but using quantum-mechanical principles.
Methods are developed for their extraction. It is shown that concurrence can
be used to extract even-partite, but not odd-partite information. Additional
relationships are also presented which can be helpful in the decoding process.
However, in general, numerical methods are mandatory. A simple roulette
method for decoding is presented and discussed. But it is shown that if
the encoder chooses to use transcendental numbers for the angles defining the
target function (α1, β1), etc, the method rapidly turns into the Devil’s roulette,
requiring finer and finer angular steps.

PACS numbers: 03.65.−w, 03.65.Ud, 03.65.Wj, 03.67.−a, 03.67.Dd,
03.67.Mn

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entangled states have played an important role in the development and understanding of the
subject we call quantum mechanics. Key milestones include the Einstein, Podolsky and Rosen
(EPR) paper (1935), Schrödinger’s statement that entanglement is the essence of quantum
mechanics (1935), Bell’s inequalities (Bell 1964) and their subsequent refutation in favour of
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quantum mechanics (Aspect et al 1982). A concise history can be found in the book by Peres
(1995a). More recently, entangled states have attracted interest in the field of teleportation
(e.g. Bennett et al 1993, Brassard 1996, Zhao et al 2004). Indeed, entanglement is now
regarded as a ‘resource’ with applications in quantum computing, quantum error correction
and quantum cryptography (e.g. Ekert 1991, Ekert and Jozsa 1998, Bennett et al 1992, 1993,
Shor 1995, 1996, Steane and Ibinson 2003, Knill 2005).

Clearly, the problem of classifying and quantifying the amount of entanglement in a
given wavefunction is of fundamental importance. Hill and Wootters (1997) and Wootters
et al (1998a, 1998b) have addressed this problem for the two qubit system. However, the
entanglement problem in three or more qubit systems is more complex (see for example
Bennett et al 2000, Acin et al 2000, Dür et al 2000, Miyake 2003, Sugita 2008).

In this paper, entanglement is approached from a differing viewpoint. In sections 2
and 3, a technique, which we call the method of images, is used to show that any entangled
pure state function can be re-expressed in the form of a linear superposition of separable
object wavefunction �O plus a portion of its own inverse image �I . In particular, a physical
representation is given of a generalized two-spin 1/2 Bell state, and it is shown that the method
of images is compatible with the Schmidt decomposition, at least for two-spin 1/2 particles.
Contact is also made, in section 4, with the concept of concurrence developed by Wootters
and co-workers (1998a, 1998b).

In sections 5–8, the problem of three-spin 1/2 particle entanglements is addressed in
some detail. It is shown that exclusive three-spin entanglement ν123 is relatively easy to
define. However, both three-spin ν123 and the two-spin entanglements ν12, ν13, ν23 can co-
exist, providing additional complexity. It is also shown that W -functions of Dür et al (2000),
fall within the framework of image-entangled states. Contact is also made with the entangled
functions of Acin et al (2000, 2001).

In sections 9 and 10, the problem of extracting the entanglement factors
ν12, ν13, ν23 and ν123 from a given pure state is examined in some detail. While concurrence
can be used to easily extract the single entanglement parameter in a two-spin 1/2 state, it
enjoys only limited success in three-spin 1/2 systems. However, some new, almost projective
relationships are also given, which could prove useful in the decoding process.

In section 11, some simple examples of decoding are discussed. These examples pave
the way for the roulette method discussed in section 12. In essence, the roulette method can
be described as a brute force technique for decoding entanglement parameters.

Finally, in sections 13 and 14, some comments are made concerning the classification
of image-entangled states. In particular, it is shown that for n-spin 1/2 systems, the
number of entanglement parameters (real, complex) is given by (Nν = (2n − (n + 1)),
Nνφ = (2n+1 − (3n + 2)), respectively. These numbers are compatible with those of Linden
and Popescu (1997) obtained by another route. As n is increased therefore, the decoding-
problem escalates rapidly in complexity. Nonetheless, for all n-spin 1/2 particle systems, the
simplest is that of exclusive n-particle entanglement ν123,...,n. Indeed, it is these entangled
wavefunctions, in their maximally entangled form (ν123..n = ±1), which give rise to the so-
called Schrödinger ‘Cat-states’ (e.g. Bennett et al 2000, Leibfried et al 2005).

2. Two-spin 1/2 particles: image entanglement

Consider the general two-particle pure state:

|�〉 = a|+〉1|+〉2 + b|+〉1|−〉2 + c|−〉1|+〉2 + d|−〉1|−〉2, (1)

2
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where (i) |±〉 is a shorthand notation for the two Zeeman states
∣∣± 1

2

〉
and (ii)

|a|2 + |b|2 + |c|2 + |d|2 = 1. (2)

Within the method of images, we shall assume, at least initially, that the coefficients a—d,
etc, are real. But this is not a limitation for two-spin 1/2 systems, since any phases can be
incorporated into the definitions of the basis sets (see Peres 1995a and appendix A).

We now present an image technique which is central to our discussion. Any two-spin 1/2
entangled state can be written in the form:

|�〉 = 1/
√

1+ν2(|�〉O + ν|�〉I ), (3)

where (i)
|�〉O = 1/

√
1+ν2((α1|+〉1 − β1|−〉1) ⊗ (α2|+〉2 − β2|−〉2))

and
|�〉I = ν1/

√
1+ν2((β1|+〉1 + α1|−〉1) ⊗ (β2|+〉2 + α2|−〉2)).

(4)

Here we have used the notation |�〉O and |�〉I to signify object and image wavefunctions,
respectively, for reasons that will become apparent in section 3. Note that (i) taken separately
|�〉O and |�〉I are separable and (ii) they are orthogonal to each other: 〈�I |�0〉 = 0 and
(iii) they are phase locked. Thus the states defined by equation (3) are pure state functions,
defined by essentially three parameters: (α1, α2, and ν), but with possible extra phases locked
away in the basis states (see appendix A). Indeed, most authors would assert that equation (3)
is obvious. Any pure state can be reduced to just two terms, by an appropriate Schmidt
decomposition (see Peres 1995a, Acin et al 2000 for a very short proof). But, while the image
approach can be easily extended to three- or more spin 1/2 particles, by way of contrast, this
does not apply to the Schmidt decomposition (e.g. Peres 1995a, 1995b). Finally, note that
we have chosen to place the negative signs in the object wavefunction, rather than the image
wavefunction. This is unimportant but leads to some advantages in multi-spin 1/2 systems.

Next we equate the coefficients of equations (1) and (3). In matrix form we find⎡
⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎦ = E2

⎡
⎢⎢⎣

α1α2

α1β2

β1α2

β1β2

⎤
⎥⎥⎦ = 1√

1 + ν2

⎡
⎢⎢⎣

1 0 0 ν

0 −1 ν 0
0 ν −1 0
ν 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

α1α2

α1β2

β1α2

β1β2

⎤
⎥⎥⎦ , (5)

where E2 can be described as an entanglement matrix. Note that E−1
2 �= E†

2, thus the
entanglement matrix E2 is not unitary in the usual sense. Nevertheless, equation (5) can easily
be used to show that the normalization condition of equations (2) and (4) hold, regardless of
the value of the entanglement admixture ν. This, of course, is not entirely unexpected given
that |�〉O and |�〉I are ‘doubly’ orthogonal to each other.

Next, we observe that equation (5) possesses the inverse:⎡
⎢⎢⎣

α1α2

α1β2

β1α2

β1β2

⎤
⎥⎥⎦ = E−1

2

⎡
⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎦ =

√
1 + ν2

1 − ν2

⎡
⎢⎢⎣

1 0 0 −ν

0 −1 −ν 0
0 −ν −1 0

−ν 0 0 1

⎤
⎥⎥⎦
⎡
⎢⎢⎣

a

b

c

d

⎤
⎥⎥⎦ . (6)

Consequently

α1α2 = +η(a − νd)

α1β2 = −η(b + νc)

β1α2 = −η(c + νb)

β1β2 = +η(d − νa)

η =
√

1+ν2

1−ν2 (7)

3
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which reveals:

α1

β1
= − (a − νd)

(c + νb)
= − (b + νc)

(d − νa)
,

α2

β2
= − (a − νd)

(b + νc)
= − (c + νb)

(d − νa)
.

(8)

Either of these two equations can be used to determine the value of the admixture ν. We find

ν = 1

2
γ ± 1

2

√
γ 2 − 4, where γ = 1

(ad − bc)
. (9)

Here the plus sign is appropriate when ν � 0, and the negative sign when ν < 0. Given
the entanglement parameter ν therefore, we can compute the ratios α1/β1 and α2/β2 from
equation (8). Thus, starting from the four coefficients a–d, we can re-construct |�〉 in the
form of equations (3) and (4).

We are now in a position to make contact with the Bell states. If ν = 0, |�〉 is fully
separable, while if ν = ±1, |�〉 is fully entangled. To see that this is so consider the situation
when α1 = α2 = 1, β1 = β2 = 0. In this case, equation (3) reduces to

|�〉 = 1√
1 + ν2

(|+〉1|+〉2 + ν|−〉1|−〉2) (10)

For ν = ±1 therefore, we find two maximally entangled Bell states. Similarly, for
α1 = β2 = 1, α2 = β1 = 0:

|�〉 = 1√
1 + ν2

(ν|+〉1|−〉2 − |−〉1|+〉2). (11)

From the above discussion it is clear that the admixture −1 � ν � 1 provides us with a
measure of the degree of entanglement. Of course, larger values of ν are allowed. But for
|ν| > 1, the roles of |�〉O and |�〉I simply reverse, with |�〉O now being the partially
entangled state of |�〉I .

In summary, equation (3) can be viewed as an image entangled state. As we shall see
its generalization to three or more spins is straightforward but non-trivial. In the following
section, a physical interpretation of the image entangled state for two-spin 1/2 particles is
briefly discussed.

3. Generalized Bell entanglement

Consider a spin 1/2 particle in the spin-up state |�〉 = ∣∣ 1
2

〉
. If we rotate the axes through the

Euler angles α′, β ′, γ ′, the new wavefunction is given by

|�〉′ = D1/2(α′β ′γ ′)
∣∣ 1

2

〉
, (12)

where the D1/2(α′β ′γ ′) are the well-known SU(2) rotation operators for a spin 1/2 particle
(e.g. Edmonds 1960, Varshalovich et al 1989). Note that we have used the symbols
(α′β ′γ ′) to distinguish between the rotation angles and the coefficients of the wavefunctions
α1, α2, β1 and β2 discussed above. But, as we shall see below, they are closely connected.

First, we rotate the particle through the Euler angles α′, β ′, γ ′, with respect to fixed axes.
Here the appropriate rotation operator to use is given by D1/2(−α′ − β ′ − γ ′) (Wolf 1969).
For simplicity, we shall set the Euler angles (α′ = γ ′ = 0), or alternately absorb them into
the basis states (see appendix A). This guarantees that the coefficients are real. In this case,

4
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equation (12) reduces to

|�〉′ =
∑
m

d1/2
m,1/2(−β ′)|m〉. (13)

In the matrix form therefore

|�〉′ =
[

cos
(

β ′
2

) −sin
(

β ′
2

)
+sin

(
β ′
2

)
cos
(

β ′
2

)
](

1
0

)
=
(

cos
(

β ′
2

)
sin
(

β ′
2

)
)

= cos

(
β ′

2

)
|+〉 + sin

(
β ′

2

)
|−〉. (14)

Thus starting from a particle in the spin-up state, we can generate any given state(
α1

∣∣ 1
2

〉
1 + β1

∣∣− 1
2

〉
1

)
, where α1 = cos

(
β ′
2

)
and β1 = sin

(
β ′
2

)
. Note that the normalization

condition is satisfied automatically.
We are now in a position to give a physical interpretation of the image entangled state

discussed in section 2. Instead of rotating by β ′ in equation (14), we rotate by β ′ + π :

|�〉′′ =
[

cos
(

β ′+π

2

) −sin
(

β ′+π

2

)
+sin

(
β ′+π

2

)
cos
(

β ′+π

2

)
](

1
0

)
=
(

−sin
(

β ′
2

)
+cos

(
β ′
2

)
)

= −sin
(

β ′
2

)
|+〉 + cos

(
β ′
2

)
|−〉. (15)

Here the values of α1, β1 have been swapped in equations (14) and (15) along with a sign
change. So we interpret |�〉 of equation (3) as the sum of the separable object wavefunction
|�〉O plus its inverse image |�〉I . In general, therefore, a generalized Bell state can be
expressed in the form:

|�〉 = φ1a ⊗ φ2a ± φ1b ⊗ φ2b

where

φ1a = D1/2(−α′ − β ′ − γ ′)
∣∣ 1

2

〉
1 ; φ2a = D1/2(−α′′ − β ′′ − γ ′′)

∣∣ 1
2

〉
2

φ1b = D1/2(−α′ − (β ′ + π) − γ ′)
∣∣ 1

2

〉
1 ; φ2b = D1/2(−α′′ − (β ′′ + π) − γ ′′)

∣∣ 1
2

〉
2 (16)

A pictorial representation can be seen in figure 1.
Note that (i) similar conclusions can also be reached if the inverse state is obtained by

rotating through 3π radians, for spin 1/2 systems and (ii) the admixture or entanglement
parameter υ is invariant for local operations (rotations) are carried out on the basis states.

In summary, an entangled state is one which possesses at least a portion of its own
inverse-image.

4. Concurrence and entangled bi-partite states

The problem of entanglement in both pure and mixed states has been considered by several
authors, notably Bennett et al (1996) and Wootters et al (1998a, 1998b). In particular, Bennett
et al (1996) have shown that entanglement E(�) for a pure bi-partite states, can be defined as
the von Neumann entropy (or equivalently the Shannon entropy) of either the reduced density
matrices ρA or ρB of a bi-partite AB system (Bennett et al 1996). However, for pure two qubit
states Wootters has introduced ‘concurrence’ as one of the measures of entanglement.

Using a slight adaption of equation (7) of Wootters (1998b), we define the concurrence
C(�) = 〈�π |�〉, where

|�π 〉 = I12(π)|�〉 =
(

0 −1
1 0

)
1

⊗
(

0 −1
1 0

)
2

|�〉, (17)

5
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Spin 1

Spin 2

x

y

z

Figure 1. A pictorial representation of a generalized Bell state.

i.e. a rotation of β = π on both particles. Thus the concurrence C(�) of the pure state

|�〉 = 1√
1 + ν2

{(
cos
(

β ′
2

)
−sin

(
β ′
2

)
)

1

⊗
(

cos
(

β ′′
2

)
−sin

(
β ′′
2

)
)

2

+ ν

(
sin
(

β ′
2

)
cos
(

β ′
2

)
)

1

⊗
(

sin
(

β ′′
2

)
cos
(

β ′′
2

)
)

2

}

= a|++〉 + b|+−〉 + c|−+〉 + d|−−〉 (18)

is given by

C(�) = 〈�π |�〉 = 2(ad − bc) = 2ν

1 + ν2
. (19)

Given the four coefficients {a, b, c, d} therefore, the entanglement parameter ν can be easily
projected out, without the need to establish the four coefficients α1, β1, α2, β2. This constitutes
a great saving in effort. A plot of C(�) can be seen in figure 2. Note that we have dropped the
modulus sign of Wootters. The latter places the concurrence of a pure state, and the entropic
entanglement 0 � E(�) � 1, on an equal footing (i.e. positive semi-definite). However,
we choose to use concurrence to determine both the magnitude and sign of entanglement
parameters, in n = 2,3, etc, spin 1/2 systems.

This completes our discussion of the bi-partite problem. We turn now to a discussion of
entanglement in three-spin 1/2 systems.

5. Exclusive three-particle entanglement: GHZ states

Once again we shall assume, for the most part, that the coefficients of the three-spin 1/2 are
real. Thus at first sight, this assumption would appear to limit the number of entangled states
that can be examined (see for example Dür et al 2000, Miyake 2003, Sugita 2008). However
the limitations are not as severe as might at first be anticipated, since most phases (bar one)
can be absorbed into the basis sets (see section 13 and appendix D).

6
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1.0 0.5 0 0.5 1.0
1

0.5

0

0.5

1.0

C
Concurrence

Figure 2. Modified concurrence C(�) as a function of ν.

First, let us assume that we are faced with exclusive three-particle entanglement. In this
case we make the ansatz:

|�〉 = 1√
1 + ν2

[
(α1|+〉1 − β1|−〉1) ⊗ (α2|+〉2 − β2|−〉2) ⊗ (α3|+〉3 − β3|−〉3)

+ν(β1|+〉1 + α1|−〉1) ⊗ (β2|+〉2 + α2|−〉2) ⊗ (β3|+〉3 + α3|−〉3)

]
, (20)

where once again certain phases have been absorbed into the basis states (see appendix B).
On equating coefficients therefore we find

a = 1

η
(α1α2α3 + νβ1β2β3), e = 1

η
(−β1α2α3 + να1β2β3),

b = 1

η
(−α1α2β3 + νβ1β2α3), f = 1

η
(β1α2β3 + να1β2α3),

c = 1

η
(−α1β2α3 + νβ1α2β3), g = 1

η
(β1β2α3 + να1α2β3),

d = 1

η
(α1β2β3 + νβ1α2α3), h = 1

η
(−β1β2β3 + να1α2α3),

η =
√

1 + ν2. (21)

As expected, it is easy to show that the normalization condition a2 + b2 + c2 + d2 +
e2 + f 2 + g2 + h2 = 1 holds, regardless of the value of ν.

Next, we rewrite equation (21) in the matrix form:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

e

f

g

h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= E3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1α2α3

α1α2β3

α1β2α3

α1β2β3

β1α2α3

β1α2β3

β1β2α3

β1β2β3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)

7
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where the entanglement matrix E3 is given by the Hermitean 8 × 8 matrix:

E3 = 1√
1 + ν2

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 ν

0 −1 0 0 0 0 ν 0
0 0 −1 0 0 ν 0 0
0 0 0 1 ν 0 0 0
0 0 0 ν −1 0 0 0
0 0 ν 0 0 1 0 0
0 ν 0 0 0 0 1 0
ν 0 0 0 0 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

It is easily shown that this matrix is its own inverse E−1
3 = E†

3 = E3. In this case therefore the
E3 matrix is unitary, a property which holds for all odd number of spin systems E5, E7, . . ..
Thus the inverse of equation (23) is given by⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1α2α3

α1α2β3

α1β2α3

α1β2β3

β1α2α3

β1α2β3

β1β2α3

β1β2β3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= E3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

e

f

g

h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

Once again the normalization condition:(
α2

1α
2
2α

2
3 + α2

1α
2
2β

2
3 + α2

1β
2
2α2

3 + α2
1β

2
2β2

3 +

β2
1α2

2α
2
3 + β2

1α2
2β

2
3 + β2

1β2
2α2

3 + β2
1β2

2β2
3

)
= 1 (25)

is satisfied, independent of the admixture ν.
To make further progress, we now determine ν, etc, starting from the coefficients a–h.

From equation (24) we find

α1α2α3 = 1

η
(+a + νh) β1α2α3 = 1

η
(−e + νd)

α1α2β3 = 1

η
(−b + νg) β1α2β3 = 1

η
(+f + νc)

α1β2α3 = 1

η
(−c + νf ) β1β2α3 = 1

η
(+g + νb)

α1β2β3 = 1

η
(+d + νe) β1β2β3 = 1

η
(−h + νa).

(26)

Clearly a great deal of correlation exists between the eight coefficients a–h. From four of
these equations it is easy to show that

α3

β3
= a + νh

−b + νg
= g + νb

−h + νa
. (27)

This equation can be used to obtain an expression for obtain an expression for ν:

ν = 1
2γ ± 1

2

√
γ 2 + 4, (28)

where

γ = a2 + b2 − g2 − h2

bg − ah
. (29)

8
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Here the plus sign in equation (28) is appropriate if ν is negative, and negative if ν is positive.
Given ν the ratios α3/β3, etc, can easily be obtained from equation (27). Note that there are
several routes to the value for ν. But because of the correlations between the coefficients a–h,
they all lead to the same result.

In the following section, it is shown that three-spin 1/2 systems can exhibit far more
complex behaviour than that implied by equation (20).

6. Combined three- and two-particle entanglement

In general, a three-spin 1/2 system can exhibit both two- and three-particle entanglements.
For example, consider the state

|�〉 = 1

η

⎡
⎢⎢⎣

(α1|+〉1 − β1|−〉1) ⊗ (α2|+〉2 − β2|−〉2) ⊗ (α3|+〉3 − β3|−〉3)

+ν23(α1|+〉1 − β1|−〉1) ⊗ (β2|+〉2 + α2|−〉2) ⊗ (β3|+〉3 + α3|−〉3)

+ν123(β1|+〉1 + α1|−〉1) ⊗ (β2|+〉2 + α2|−〉2) ⊗ (β3|+〉3 + α3|−〉3)

⎤
⎥⎥⎦

η =
√

1 + ν2
23 + ν2

123 . (30)

Here there is partial entanglement between particles {2, 3} (ν23) and partial three-body
entanglement (ν123) between particles {1, 2, 3}. Note that all three components in equation
(30) are orthogonal to each other. Our problem therefore is to determine both ν23 and ν123.

On equating coefficients we find⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

e

f

g

h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

η

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 ν23 0 0 0 ν123

0 −1 ν23 0 0 0 ν123 0
0 ν23 −1 0 0 ν123 0 0

ν23 0 0 1 ν123 0 0 0
0 0 0 ν123 −1 0 0 −ν23

0 0 ν123 0 0 1 −ν23 0
0 ν123 0 0 0 −ν23 1 0

ν123 0 0 0 −ν23 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1α2α3

α1α2β3

α1β2α3

α1β2β3

β1α2α3

β1α2β3

β1β2α3

β1β2β3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= U

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1α2α3

α1α2β3

α1β2α3

α1β2β3

β1α2α3

β1α2β3

β1β2α3

β1β2β3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(31)

which possesses the inverse⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1α2α3

α1α2β3

α1β2α3

α1β2β3

β1α2α3

β1α2β3

β1β2α3

β1β2β3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= κ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ1 0 0 χ2 χ3 0 0 χ4

0 −χ1 χ2 0 0 −χ3 χ4 0
0 χ2 −χ1 0 0 χ4 −χ3 0
χ2 0 0 χ1 χ4 0 0 χ3

χ3 0 0 χ4 −χ1 0 0 χ2

0 −χ3 χ4 0 0 χ1 χ2 0
0 χ4 −χ3 0 0 χ2 χ1 0
χ4 0 0 χ3 χ2 0 0 −χ1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

e

f

g

h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (32)

9



J. Phys. A: Math. Theor. 42 (2009) 345204 G J Bowden

where

χ1 = (1 − ν2
23 + ν2

123

)
, χ2 = −ν23

(
1 − ν2

23 − ν2
123

)
χ3 = −2ν23ν123, χ4 = ν123

(
1 + ν2

23 + ν2
123

)

κ =
√(

1 + ν2
23 + ν2

123

)
(
(1 − ν23)2 + ν2

123

)× ((1 + ν23)2 + ν2
123

) = η(
η4 − 4ν2

23

) .
(33)

With the aid of this transformation therefore we find

α1α2α3 = κ(+aχ1 + dχ2 + eχ3 + hχ4),

α1α2β3 = κ(−bχ1 + cχ2 − f χ3 + gχ4),

α1β2α3 = κ(+bχ2 − cχ1 + f χ4 − gχ3),

α1β2β3 = κ(+aχ2 + dχ1 + eχ4 + hχ3),

β1α2α3 = κ(+aχ3 + dχ4 − eχ1 + hχ2),

β1α2β3 = κ(−bχ3 + cχ4 + f χ1 + gχ2),

β1β2α3 = κ(+bχ4 − cχ3 + f χ2 + gχ1),

β1β2β3 = κ(+aχ4 + dχ3 + eχ2 − hχ1).

(34)

Consequently

α1

β1
= (aχ1 + dχ2 + eχ3 + hχ4)

(aχ3 + dχ4 − eχ1 − hχ2)
= (−bχ1 + cχ2 − f χ3 + gχ4)

(−bχ3 + cχ4 + f χ1 + gχ2)

= (bχ2 − cχ1 + f χ4 − gχ3)

(bχ4 − cχ3 + f χ2 + gχ1)
= (aχ2 + dχ1 + eχ4 + hχ3)

(aχ4 + dχ3 + eχ2 − hχ1)

(35)

with similar expressions for α2/β2 and α3/β3.
From equation (35) we can pair off any two of the four values for α1/β1 and hence

obtain a solution for ν23 and ν123. In practice, this can be achieved using programs such as
Mathematica with the FindRoots routine. But the procedure is tedious, given that starting
values have to be supplied.

7. General three-particle entanglement

Finally, we address the general three-spin 1/2 entanglement problem: namely the co-existence
of ν12, ν13, ν23 and ν123 entanglement. This time the wavefunction takes the form:

|�〉 = 1

η

⎡
⎢⎢⎢⎢⎣

(α1|+〉1 − β1|−〉1) ⊗ (α2|+〉2 − β2|−〉2) ⊗ (α3|+〉3 − β3|−〉3)

+ν23(α1|+〉1 − β1|−〉1) ⊗ (β2|+〉2 + α2|−〉2) ⊗ (β3|+〉3 + α3|−〉3)

+ν12(β1|+〉1 + α1|−〉1) ⊗ (β2|+〉2 + α2|−〉2) ⊗ (α3|+〉3 − β3|−〉3)

+ν13(β1|+〉1 + α1|−〉1) ⊗ (α2|+〉2 − β2|−〉2) ⊗ (β3|+〉3 + α3|−〉3)

+ν123(β1|+〉1 + α1|−〉1) ⊗ (β2|+〉2 + α2|−〉2) ⊗ (β3|+〉3 + α3|−〉3)

⎤
⎥⎥⎥⎥⎦

η =
√

1 + ν2
23 + ν2

12 + ν2
13 + ν2

123.

(36)

On equating coefficients we find that⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

e

f

g

h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1

η

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 ν23 0 ν13 ν12 ν123

0 −1 ν23 0 ν13 0 ν123 −ν12

0 ν23 −1 0 ν12 ν123 0 −ν13

ν23 0 0 1 ν123 −ν12 −ν13 0
0 ν13 ν12 ν123 −1 0 0 −ν23

ν13 0 ν123 −ν12 0 1 −ν23 0
ν12 ν123 0 −ν13 0 −ν23 1 0
ν123 −ν12 −ν13 0 −ν23 0 0 −1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1α2α3

α1α2β3

α1β2α3

α1β2β3

β1α2α3

β1α2β3

β1β2α3

β1β2β3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (37)

This deceptively simple transformation matrix can be inverted algebraically. But the resulting
matrix elements are very complicated with no zeros. In practice, it may be possible to make

10
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progress using partitioned matrix theory, since the 8 × 8 matrix of equation (37) can be broken
down into smaller 4 × 4 matrices. Nonetheless, general progress can be made as follows.

First, we re-define the inverse transformation:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1α2α3

α1α2β3

α1β2α3

α1β2β3

β1α2α3

β1α2β3

β1β2α3

β1β2β3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= U−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

e

f

g

h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= U−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a1

a2

a3

a4

a5

a6

a7

a8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (38)

where, for simplicity, we have redefined the coefficients (a − h) as (a1 − a8). Thus,

α1α2α3 =
∑

j

(U−1)1j aj

α1α2β3 =
∑

j

(U−1)2j aj

. . .

β1β2β3 =
∑

j

(U−1)8j aj .

(39)

Once again, we insist that the four solutions for say the α3/β3, etc, must, of course, be
identical:

α3

β3
=
∑

j (U−1)1j aj∑
j (U−1)2j aj

=
∑

j (U−1)3j aj∑
j (U−1)4j aj

=
∑

j (U−1)5j aj∑
j (U−1)6j aj

=
∑

j (U−1)7j aj∑
j (U−1)8j aj

. (40)

Likewise for α2/β2, and α1/β1. From such equations we can determine the coefficients
ν12, ν13, ν23 and ν123 and hence obtain a full solution for the multiply entangled three-particle
spin 1/2 system.

In summary, the three-spin 1/2 image entangled systems can exhibit very complex
behaviour, involving the co-existence of three-particle ν123 and two-particle entanglements
ν12, ν13 and ν23. These conclusions find a natural resonance with the comments of Bennett
et al (2000). The latter note that there are different classes of entanglement, and stress that the
maximally entangled tri-partite or |GHZ〉 Cat-states (exclusive three-particle entanglement)
cannot be expressed in terms of bi-partite (EPR) entangled-states. These ideas have been
extended by Dür et al (2000), Miyake (2003) and Sugita (2008), using group theoretical
methods. In particular, these authors have shown that in addition to |GHZ〉 and |EPR〉 states
there are |W 〉 states. These are discussed in the following section.

8. W -entangled states

Dür et al (2000) identified a new class of |W 〉 states that are orthogonal to the |GHZ〉 states
(see also Schlienz and Mahler 1996). One such state takes the form

|W 〉 = 1√
3
{|+〉1|+〉2|−〉3 + |+〉1|−〉2|+〉3 + |−〉1|+〉2|+〉3}(≡ 1√

3
{|001〉 + |010〉 + |100〉}) (41)

(see equation (2) of Dür et al 2000). This function falls within the general framework of
equation (36). If we set α1 = α2 = 1, β3 = −1 and ν12 = 0, ν13 = ν23 = −1, ν123 = 0,

11
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we find the |W 〉 function of equation (41). Likewise, if we place α1 = 1, β2 = β3 = 1 and
ν23 = 0, ν12 = ν13 = −1, ν123 = 0 we find

|W 〉I = 1√
3
{|−〉1|−〉2|+〉3 + |−〉1|+〉2|−〉3 + |+〉1|−〉2|−〉3}(≡ 1√

3
{|110〉 + |101〉 + |011〉}), (42)

i.e. the mirror state of equation (41). As noted by Dür et al (2000), the |W 〉 state of equation
(41) is orthogonal to the |GHZ〉 = 1√

2
{|000〉 ± |111〉} states. However, this is not surprising,

given that the |GHZ〉, (|W 〉) states are characterized by
∣∣SZ = ± 3

2

〉
,
(∣∣SZ = ± 1

2

〉)
, respectively.

A state, more in keeping with the Bell and GHZ states, is obtained on setting
α1 = β1 = α2 = β2 = α3 = β3 = 1√

2
and ν12 = ν13 = ν23 = − 1

3 , ν123 = 0. We
find

|WS〉 = 1√
6

⎛
⎝(|011〉 + |101〉 + |110〉)

−
(|001〉 + |010〉 + |001〉)

⎞
⎠ . (43)

Note that in three |W 〉 cases considered above, exclusive three-particle entanglement (ν123) is
always zero.

In practice, it is possible to generate many four component |W 〉−like functions using say
α1 = α2 = α3 = 1, ν123 = 0. We find

|W 〉 = 1√
1 + ν2

12 + ν2
13 + ν2

23

{|+〉1|+〉2|+〉3 + ν12|−〉1|−〉2|+〉3 + ν13|−〉1|+〉2|−〉3

+ ν23|+〉1|−〉2|−〉3}⎛
⎝≡ 1√

1 + ν2
12 + ν2

13 + ν2
23

{|000〉 + ν12|110〉 + ν13|101〉 + ν23|011〉}
⎞
⎠ (44)

Here the |W 〉−like function of equation (44) is identical to |�1〉 of Schlienz and Mahler
(1996), provided we set ν12 = ν13 = ν23 = 1. (See their equation (2)).

In summary, the |W 〉 functions of Schlienz and Mahler (1996) and Dür et al (2000) belong
to the image class of joint bi-partite entanglement ν12, ν13, ν23 �= 0, with no triple particle
entanglement ν123.

9. Concurrences in three-spin 1/2 systems

In sections (9)–(12), we shall assume that the four entanglement factors ν12, ν13, ν23, ν123 are
real. Thus the resulting eight coefficients (a–h) are also real. Later, in section 13, we shall
generalize the entanglement parameters to include a complex term ν12, ν13, ν23, ν123eiφ123 i.e.
five entanglement parameters. But, as we shall see, there is already sufficient fun, and games,
to be had with real coefficients.

In general, it is a relatively easy matter to encode entanglement factors ν12, ν13, ν23, ν123

into a given state function. However, given the resulting eight coefficients (a–h), it is quite
another matter to retrieve them. Since concurrence can be used to advantage in the two-qubit
problem (see section 5), it is obviously of some interest ask whether or not this is also the case
in three-spin 1/2 systems. There are some surprises.

Consider first the case where the three spins in question exhibit partial bi-partite ν23 and
tri-partite ν123 = (ν) entanglement. Such a state takes the form:

12
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|�〉 = 1

η

((
α1

−β1

)
⊗
(

α2

−β2

)
⊗
(

α3

−β3

)
+ ν23

(
α1

−β1

)
⊗
(

β2

α2

)
⊗
(

β3

α3

)

+ ν123

(
β1

α1

)
⊗
(

β2

α2

)
⊗
(

β3

α3

))

η =
√

1 + ν2
23 + ν2

123. (45)

For the purposes of this paper, the target wavefunction is defined to be the first term in
equation (45), since all the remaining states are derived from this target state, via simple π

rotations.
The inverse image |�π 〉 of equation (45) is readily obtained using the π rotation matrix:

I123(π) =
(

0 −1
1 0

)
⊗
(

0 −1
1 0

)
⊗
(

0 −1
1 0

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 −1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0
0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(46)

We find

|�π 〉 = 1

η

((
β1

α1

)
⊗
(

β2

α2

)
⊗
(

β3

α3

)
+ ν23

(
β1

α1

)
⊗
(

α2

−β2

)
⊗
(

α3

−β3

)

− ν123

(
α1

−β1

)
⊗
(

α2

−β2

)
⊗
(

α3

−β3

))
. (47)

Thus the scalar product

C(�) = 〈�π |�〉 = ν123 − ν123

η2
≡ 0. (48)

This, at first sight surprising result, is due to a fundamental property of spin 1/2 systems. On
inverting the pure state wavefunctions |± ± · · · ±〉n we find

In(π)|+ + · · · +〉n = (−1)n|− − · · · −〉n,
In(π)|− − · · · −〉n = |+ + · · · +〉n.

(49)

Thus for the GHZ state |�〉GHZ = 1√
2
{|+ + +〉 ± |− − −〉} we obtain

C(�) = 〈�π |�〉 = 1
2 {∓〈− − −| + 〈+ + +|} • {±|+ + +〉 + |− − −〉} = 0, (50)

whereas for the four-spin Cat state |�(Cat)〉4 = 1√
2
{|+ + ++〉 ± |− − −−〉}:

C(�) = 〈�π |�(Cat)〉4 = ±1. (51)

It would appear therefore that if n is odd, concurrence cannot be used to recover the
entanglement parameter ν12..n. This problem is further examined in appendix C. But, as
we shall see below, the situation is not as bleak as it might seem at first sight.
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10. Two-particle concurrences in a three-spin 1/2 system

Suppose a new wavefunction is formed where only the particles 2 and 3 are π -reversed. The
inverse/image matrix this time is given by

I23(π) =
(

1 0
0 1

)
⊗
(

0 −1
1 0

)
⊗
(

0 −1
1 0

)
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 −1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 −1 0
0 0 0 0 0 −1 0 0
0 0 0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(52)

Thus

|�π(2,3)〉 = 1

η

((
α1

−β1

)
⊗
(

β2

α2

)
⊗
(

β3

α3

)
+ ν23

(
α1

−β1

)
⊗
(

α2

−β2

)
⊗
(

α3

−β3

)

+ ν123

(
α1

−β1

)
⊗
(

β2

α2

)
⊗
(

β3

α3

))
. (53)

Here the concurrence between |�π(2,3)〉 and |�〉 is given by

C23 = 〈�π(2,3)|�〉 = 2ν23

1 + ν2
23 + ν2

123

= 2(ad + eh − bc − fg). (54)

Note that C23 depends on both the entanglement parameters ν23 and ν123, the latter via the
normalization.

This procedure can easily be extended to deal with the general state where all four
entanglement parameters ν12, ν13, ν23, ν123 are present. We find

C12 = 〈�π(12)|�〉 = 2(ν12 − ν13ν23)

η2
= 2(ag + bh − ce − df ),

C13 = 〈�π(13)|�〉 = 2(ν13 − ν12ν23)

η2
= 2(af + ch − be − dg),

C23 = 〈�π(23)|�〉 = 2(ν23 − ν12ν13)

η2
= 2(ad + eh − bc − fg).

(55)

Finally, if we compute the tri-partite concurrence

C123 = 〈�π(123)|�〉 = 0 (56)

in accord with our earlier comments regarding n-odd spin 1/2 systems. In conclusion,
concurrence can be used to project out some details of the bi-partite entanglement factors,
albeit with some cross-mixing.

Before leaving this section, it is instructive to consider a few simple cases. Firstly, if no
bi-partite entanglements exists C12 = C13 = C23 ≡ 0. In general, therefore we have a simple
test for the presence or absence of two-particle entanglement. But note that this is also the
case when ν12 = ν13 = ν23 = 1! Secondly, suppose only one two-particle entanglement ν12

exists. We find

C12 = 2ν12

1 + ν2
12 + ν2

123

,

C13 = C23 = 0,

(57)
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i.e. one equation but two unknowns. Thirdly, if say only ν23 = 0 then

C12 = 2ν12

1 + ν2
12 + ν2

13 + ν2
123

,

C13 = 2ν13

1 + ν2
12 + ν2

13 + ν2
123

,

C23 = −2ν12ν13

1 + ν2
12 + ν2

13 + ν2
123

.

(58)

Thus if both ν12 and ν13 < 1, the two-particle concurrence C23 ∝ ν12ν13 is smaller than that
of C12 and C13. However, equation (55) presents us with a dilemma: three equations and four
unknowns. However all is not lost. Other relationships/correlations exist between the eight
coefficients.

On expanding the general entangled state we find

|�〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

b

c

d

e

f

g

h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

η

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

{+α1α2α3 + β1β2α3ν12 + β1α2β3ν13 + α1β2β3ν23 + β1β2β3ν}
{−α1α2β3 − β1β2β3ν12 + β1α2α3ν13 + α1β2α3ν23 + β1β2α3ν}
{−α1β2α3 + β1α2α3ν12 − β1β2β3ν13 + α1α2β3ν23 + β1α2β3ν}
{+α1β2β3 − β1α2β3ν12 − β1β2α3ν13 + α1α2α3ν23 + β1α2α3ν}
{−β1α2α3 + α1β2α3ν12 + α1α2β3ν13 − β1β2β3ν23 + α1β2β3ν}
{+β1α2β3 − α1β2β3ν12 + α1α2α3ν13 − β1β2α3ν23 + α1β2α3ν}
{+β1β2α3 + α1α2α3ν12 − α1β2β3ν13 − β1α2β3ν23 + α1α2β3ν}
{−β1β2β3 − α1α2β3ν12 − α1β2α3ν13 − β1α2α3ν23 + α1α2α3ν}

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η =
√

1 + ν2
12 + ν2

13 + ν2
23 + ν2.

(59)

After some manipulation it can be shown that

(ah − bg − cf + de) = [−2α1β1(ν23 + ν12ν13) + ν
(
α2

1 − β2
1

)]/
η,

(ah − bg + cf − de) = [−2α2β2(ν13 + ν12ν23) + ν
(
α2

2 − β2
2

)]/
η,

(ah + bg − cf − de) = [−2α3β3(ν12 + ν13ν23) + ν
(
α2

3 − β2
3

)]/
η.

(60)

Note that unlike the concurrences of equation (55) the relationships of equation (60) depend
on both bi-partite and tri-partite entanglement factors, and the coefficients (α1, β1), etc, but in
a relatively simple way. Moreover if we set the target state at |+ + +〉 i.e. α1 = α2 = α3 = 1
then

(ah − bg − cf + ed) = ν/η,

(ah − bg + cf − ed) = ν/η,

(ah + bg − cf − ed) = ν/η.

(61)

In this case, therefore, we have a very simple way of projecting out the three-particle
entanglement parameter ν (apart from normalization). Also equation (61) can be used to
provide a simple test for determining the presence of pure up or down target wavefunctions.
Alternatively, if we set α1 = α3 = 1 and β2 = 1 then

(ah − bg − cf + ed) = ν/η,

(ah − bg + cf − ed) = −ν/η,

(ah + bg − cf − ed) = ν/η.

(62)

Clearly, there are many games that can be played. For example, if we set α1 = β1 = α2 =
β2 = α3 = β3 = 1/

√
2 then

(ah − bg − cf + ed) = −(ν23 + ν12ν13)/η,

(ah − bg + cf − ed) = −(ν13 + ν12ν23)/η,

(ah + bg − cf − ed) = −(ν12 + ν13ν23)/η.

(63)
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In summary, the bi-partite concurrences of equation (55), plus the new relationships of
equation (60) may prove to be useful, either in speeding up the extraction of entanglement
factors and/or checking their values.

11. Some simple examples

It is instructive to consider a few simple examples, since one of these provides the basis for
the roulette method described in the following section.

Suppose the target function is set at |+ + +〉, then from equation (59) we have

|�〉 = 1

η

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
0
0

ν23

0
ν13

ν12

ν123

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

0
0
d

0
f

g

h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (64)

In this case, the entanglement factors can immediately be determined simply by inspection.
For example ν123 = h/a, ν12 = g/a, etc. Similar expressions can be obtained on setting the
target function to be |+ + −〉, |+ − +〉, etc. In all cases there are just three zero entries in |�〉,
whose positions are determined by the form of the target function.

As the next step in increasing complexity, consider the case where the target function is
set to

(
α1

β1

)⊗ (10)⊗ (10). We find

|�〉 = 1

η

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1

β1ν13

β1ν12

α1ν23 + β1ν123

−β1

α1ν13

α1ν12

−β1ν23 + α1ν123

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

e

f

g

h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (65)

Thus, the following relationships hold:

α1 = ηa, β1 = −ηe

ν12 = g

a
= −c

e
, ν13 = f

a
= −b

e
aν23 − eν123 = d, −eν23 + aν123 = h.

(66)

A simple test for the existence of this type of solution would be to check that both
ac + eg ≡ 0 and ab + ef ≡ 0. Given that this is the case, the four entanglement parameters
are given by

ν12 = g

a
, ν13 = f

a

ν23 = ad + eh

a2 − e2
, ν123 = ah + de

a2 − e2
.

(67)

16



J. Phys. A: Math. Theor. 42 (2009) 345204 G J Bowden

As the next step, in increasing complexity, consider the case where the target function is set
to
(
α1

β1

)⊗ (α2

β2

)⊗ (10). We find

|�〉 = 1

η

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

α1α2 + β1β2ν12

β1α2ν13 + α1β2ν23 + β1β2ν123

−α1β2 + β1α2ν12

−β1β2ν13 + α1α2ν23 + β1α2ν123

−β1α2 + α1β2ν12

α1α2ν13 − β1β2ν23 + α1β2ν123

β1β2 + α1α2ν12

−α1β2ν13 − β1α2ν23 + α1α2ν123

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a

b

c

d

e

f

g

h

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (68)

In this situation, one of the new relationships can be used to advantage. From equation (60)
we find

(ah − bg − cf + de) = [−2α1β1(ν23 + ν12ν13) + ν
(
α2

1 − β2
1

)]/
η

(ah − bg + cf − de) = [−2α2β2(ν13 + ν12ν23) + ν
(
α2

2 − β2
2

)]/
η

(ah + bg − cf − de) = ν/η.

(69)

From the last line of equation (69) therefore, we can essentially project out the tri-partite
entanglement factor ν. On combining the latter therefore, with the three concurrences of
equation (55), we have four equations and four unknowns.

But for the general target wavefunction, it would appear that there are no simple analytic
methods, concurrence or otherwise, which can be used to project out the four entanglement
factors available to three-spin 1/2 systems. Thus numerical methods are mandatory. As noted
earlier, a numerical solution has already been presented earlier in section 7. But this procedure
is tedious when all four entanglement parameters are present. Another, simpler, brute-force
method is presented in the following section.

12. The three wheel roulette method

We have already observed that if the target function is a pure state, e.g.|+ + +〉, the problem of
decoding the entanglement factors is trivial (see equation (64) above). This suggests therefore
that if we could rotate the co-ordinate systems of the individual spins, to those where the spins
are aligned along their individual z-axes, the problem is solved. However, a little mathematics
is required to show that this is indeed possible, starting from the eight coefficients {a, b, c, . . . ,
h}.

Firstly, we take the pure state |+ + +〉 as our initial starting point. Secondly, a target state
can be generated from the |+ + +〉 state using rotations. Explicitly,

|�〉T =
(

α1 β1

−β1 α1

)
⊗
(

α2 β2

−β2 α2

)
⊗
(

α3 β3

−β3 α3

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1α2α3

α1α2β3

α1β2α3

α1β2β3

β1α2α3

β1α2β3

β1β2α3

β1β2β3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (70)

where

α1 = cos
θ1

2
, β1 = sin

θ1

2
etc. (71)
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Thirdly, an entangled state is subsequently obtained by applying the various π rotations and
adding all the entangled terms together. This can be expressed in the single matrix form:

|�〉E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

b

c

d

e

f

g

h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

η

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 ν23 0 ν13 ν12 −ν

0 1 −ν23 0 −ν13 0 ν ν12

0 −ν23 1 0 −ν12 ν 0 ν13

ν23 0 0 1 −ν −ν12 −ν13 0
0 −ν13 −ν12 ν 1 0 0 ν23

ν13 0 −ν −ν12 0 1 −ν23 0
0 −ν 0 −ν13 0 −ν23 1 0
ν ν12 ν13 0 ν23 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α1α2α3

α1α2β3

α1β2α3

α1β2β3

β1α2α3

β1α2β3

β1β2α3

β1β2β3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(72)

Fourthly, we observe that equations (70) and (72) can be summarized in the matrix form:

|�〉E =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

b

c

d

e

f

g

h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= E({ν})R({θ})

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= R({θ})E({ν})

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (73)

where (i) {ν} and {θ} are the shorthand notation for the entanglement parameters
{ν12, ν13, ν23, ν} and the three rotational angles {θ1, θ2, θ3}, respectively and (ii) we have
used the fact that entanglement E({ν}) and rotational matrices R({θ}) commute with each
other. Consequently, if we apply the reverse rotational operator to equation (73) we find

R({θ})−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a

b

c

d

e

f

g

h

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= E({ν})

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

η

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
0

ν23

0
ν13

ν12

ν123

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (74)

Our task therefore is to discover the three reverse rotational matrices:

R({θ})−1 =
(

α1 −β1

β1 α1

)
⊗
(

α2 −β2

β2 α2

)
⊗
(

α3 −β3

β3 α3

)
, (75)

which satisfy equation (74). Note that this method works because the entanglement and
rotational matrices E({ν}) and R({θ}) commute. This is also the case for the four-spin
1/2 problem, characterized by 16 × 16 matrices and a maximum of 11 real entanglement
parameters. But this is not surprising, given that the entanglement factors are invariant under
local rotations.

In practice, the three wheel roulette method requires an algorithm which cycles over the
three angles {θ1, θ2, θ3}, until three zeroes are found on the right-hand side of equation (74), in
the places specified. Since this involves spinning the angles θ1, θ2, θ3, repeatedly, it is natural
to call this procedure: the roulette method. In practice, the method works well if integer values
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are used for the angles α1, β1, etc, used to generate the target wavefunction:
(
α1

β1

)⊗(α2

β2

)⊗(α3

β3

)
.

But if the encoder chooses to use transcendental numbers for θ1, θ2, θ3, it soon becomes very
tedious. Indeed, the procedure could then be described as the Devils’ roulette, requiring
ever finer angular steps. But, at worst, it could be used to provide approximate values of
{ν12, ν13, ν23, ν123}, which can then be used as I/P parameters to say a FindRoots routine, as
detailed above in section 7.

13. Classification of image-entangled states

From an examination of the general entangled wavefunction of equation (36) it is evident
that the three- and two-particle image wavefunctions are all orthogonal to each other, and
individually to the primary object wavefunction. Therefore, provided the entanglement
factors are real, we have a natural classification for entangled image states: one exclusive
three-particle ν123 and three two-particle ν12, ν13, ν23 parameters. But this does not rule
out the existence of sub-classes. For example, a mixture of bi-partite ν12, ν13, ν23 �=
0 entanglement can be used to generate the |W 〉 functions of Dür et al (2000) (see
section 9). In all, for the three-spin 1/2 problem, there are a possible eight sub-
classes. These are (i) simple product states(ν12 = ν13 = ν23 = ν123 = 0), (ii) the three
bi-partite sub-classes {(ν12), (ν12, ν13), (ν12, ν13, ν23)}, where it is understood that the sub-
class (ν12, ν13) includes (ν12, ν23) and (ν13, ν23), and (iii) joint bi-partite and tri-partite
states: {(ν123), (ν12, ν123), (ν12, ν13, ν123), (ν12, ν13, ν23, ν123)}. These can be used to classify
all possible states from fully separable wavefunctions, to W -functions, partially and fully
entangled GHZ states, etc.

We now make contact with the work of Acin et al (2000, 2001). Using a generalization
of the Schmidt decomposition, the former have shown that the three-qubit problem can be
reduced to five (as opposed to eight) local basis states (see Acin et al 2000, equation (2), where
three differing basis states are listed). This conclusion finds a natural resonance with equation
(36), which also employs five orthogonal functions. However, Acin et al have shown that in
addition to the reduction to five basis sets, the general entangled three-qubit system requires
five entanglement parameters. This therefore appears to clash with the image approach where
so far just four entanglement factors (ν12, ν13, ν23, ν123) have been employed. However, in
appendix D it is shown that, in general, five parameters are indeed required:
(ν12, ν13, ν23, ν123, φ123). Phase shifts associated with bi-particle entanglement can be
absorbed into the basis states, but complete phase absorption turns out not to be possible
in the presence of both bi-partite and triple-partite entanglements. Thus, the minimalistic
general entangled three-qubit pure state takes the form:

|�〉 = 1

η
[|+ + +〉 + ν12|− − +〉 + ν13|− + −〉 + ν23|+ − −〉 + ν123 eiφ123 |− − −〉], (76)

where (i) |ν12|2 + |ν13|2 + |ν23|2 + |ν123|2 � 1 and (ii) 0 � φ123 � 2π . This simple state, can
be used to illustrate, in a very transparent way, all of the eight entangled classes W GHZ, etc,
that arise in three-spin 1/2 entangled systems. Note also that (i) the meaning of the factors
(ν12, ν13, ν23, ν123) is immediately apparent and (ii) the phase shift φ123 can be interpreted as
an extra rotation of the triple-inverse image about the z-axis. A schematic diagram of the
general entangled state of equation (76) can be seen in figure 3.

Finally, it should be noted that |�〉 of equation (76) is similar to that proposed by Acin
et al (2000, 2001), namely

|�A〉 = [λ0|+ + +〉 + λ1 eiφ |− + +〉 + λ2|− + −〉 + λ3|− − +〉 + λ4|− − −〉], (77)
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12 13 23

123

Figure 3. A schematic representation of an entangled three-spin 1/2 system. All three bi-partite
entangled functions are phase locked with θ ≡ 0◦ or 180◦ and φ ≡ 0◦ to the target state |+ + +〉.
Note that the target state spins are all parallel. This is not strictly necessary, but the phases of the
individual spins in both the target and bi-partite entangled functions should be 100% correlated.
The exception is the tri-partite entangled function, which is related to the target state by an extra
phase rotation of φ123.

i.e. five basis states and five entanglement parameters, as mentioned earlier. Here Acin et al
have chosen, arbitrarily, to assign the phase shift φ to second term. This is in marked contrast
to the image approach, where there is a good reason for assigning the phase factor to the
|− − −〉 state (see appendix D). However, note that if λ2 = λ3 = λ4 = 0, equation (77) can
be fully factorized. Similar difficulties also exist for the other two sets proposed by Acin et al.

These problems however, can be resolved, and the two approaches reconciled, if it is
assumed that in contrast to ν12 − ν123 parameters, the coefficients λ0 − λ4 are not independent
of each other. To check this point, we have re-cast the image state of equation (76) into the
form advocated by Acin et al i.e. by first performing a unitary transformation on the first
qubit (with the requirement that |T ′

0| = 0), followed by singular value decomposition on
the remaining two qubits. In general, the relationship between the coefficients λ0 − λ4 and
ν12 − ν123 is complex. For example, on setting the determinant |T ′

0| = 0 we find

ν23 cos2 θ + ν123 sin θ cos θ − ν12ν13 sin2 θ = 0, (78)

where θ defines the unitary transformation on the first qubit. In view of this complexity
therefore, we have used a numerical approach, to obtain the complementary form equation (77)
given equation (76). In general, it is found that the coefficients λ0 − λ4 and ν12 − ν123 differ
markedly. But when the partial entropies of entanglement are computed, using the methods
outlined by Ekert and Knight (1995), but extended to the three-spin 1/2 system, they are found
to be identical. In passing, we note that the phase factor φ123 plays no role in determining the
partial entropies of the three spins.

In summary therefore, the number of entanglement parameters ν12, ν13, . . ., and
concomitant sub-classes, will increase rapidly with increasing numbers of spins. If all the
parameters are real, we find the statistics summarized in table 1. In general, it is easily shown,
using table 1, or otherwise, that the number of real parameters is given by Nν = 2n − (n + 1).

If we now include phases we find the results summarized in table 2. In general, we can
only absorb n entanglement phases for n spins (see appendix D).

We are now in a position to make contact with the work of Linden and Popescu
(1997). First, we note that the number of entanglement parameters given in table 2:
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Table 1. Numbers of entanglement parameters and sub-classes as function of Nν for spin 1/2
systems, for real entanglement factors.

n νij νijk νijkl νijklm νijklmn Total Nν No. sub-classes

2 1 1 2
3 3 1 4 8
4 6 4 1 11 60
5 10 1 5 1 26 1127
6 15 20 15 6 1 57 58 858

Table 2. Total numbers of entanglement parameters (real plus phases) for spin 1/2 systems with
n � 6. In general, Nνφ = 2(Nν) − n = 2n+1 − (3n + 2).

n νij νijk(φijk) νijkl(φijkl) νijklm(φijklm) νijklmn(φijklmn) Total Nν(Nφ) TotalNνφ

2 1 1 1
3 3(0) 1(1) 4(1) 5
4 6(6) 4(0) 1(1) 11(7) 18
5 10(10) 10(10) 5(0) 1(1) 26(21) 47
6 15(15) 20(20) 15(15) 6(0) 1(1) 57(51) 108

Nνφ = 2n+1 − (3n + 2) is similar to that given by Linden and Popescu: N � 2n+1 − (3n + 1),
obtained by simple counting. However, in this work, we have been at pains to drop the phase
factor associated with the target state. For example, consider the general state belonging to
the unitary group U(2) ⊗ U(2):

|�〉 = a eiφ++ |++〉 + b eiφ+−|+−〉 + c eiφ−+ |−+〉 + d eiφ−−|−−〉
= eiφ++(a|++〉 + b eiφ′

+− |+−〉 + c eiφ′
−+ |−+〉 + d eiφ′

−− |−−〉). (79)

Here 2n+1(n = 2) = 8 are free parameters. However, in this paper, we have simply dropped
the phase factor eiφ++ , as being unimportant:

|�〉 =→ (a|++〉 + b eiφ′
+−|+−〉 + c eiφ′

−+ |−+〉 + d eiφ′
−− |−−〉). (80)

So the number of available parameters is inevitably reduced to 2n+1 − 1, for all n. Second,
we note that the Linden and Popescu have suggested that there may be more entanglement
parameters, other than those obtained by simple counting (hence the lower bound). No
examples were given, but if we insist that the basis set is fixed, with say all phases set equal
to zero, then, by definition, the entanglement-phase parameters φij,...,k cannot be absorbed
into the basis set and must be counted as free parameters. Consequently, the number of
entanglement parameters rises to a maximum of Nmax = 2n+1 − 2(n + 1).

From tables 1 and 2, it is immediately apparent that the number of entanglement parameters
rapidly exceeds the number of local parameters, as the number of spins n is increased (see
Linden and Popescu 1997). For the general six-spin 1/2 configuration, 57 real entanglement
parameters are possible and an astonishing 58 858 sub-classes: more if we allow φ123 �= 0, etc.
In practice, this would pose considerable problems for a decoder, say Bob, trying to retrieve
the entanglement factors built by Alice into a given |�〉. Perhaps such problems could be
relieved by the sender, say Alice, providing some details of the wavefunction by an alternative
secure route. However, the situation is trivial if only exclusive n-particle entangled Cat-states
are involved.

Finally, it might be helpful to some readers to give a simple allegory of the entanglement
problem. In figure 1, we have portrayed the partially entangled two-spin 1/2 system as one
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with a linear superposition of an object wavefunction with its inverse image: generalized
Bell entanglement. However, in multi-spin 1/2 systems the situation is much more complex.
Consider Alice as a representation of a four-coupled-spin system i.e. her head, torso, arms and
legs. We can mimic an entangled state as one where Alice is entangled with her own image in
the looking glass. On increasing the degree of pure four-spin entanglement, the image of Alice
in the mirror will increase from nothing to a complete image. But in quantum mechanics,
Alice’s image is as important as Alice herself. So as the image becomes stronger, Alice
herself must decrease to preserve normalization. If we now allow partial-body entanglement,
the situation becomes even more curious. For example, Alice could be partially entangled
with only her torso, arms and legs. Thus the image of Alice in the mirror would be complete
except for her head. In general therefore, with differing entanglement factors, parts of Alice
could appear stronger in the flesh than those in the mirror, and vice versa. In addition, we note
that perhaps a more accurate description of the mirror can be achieved using the analogy of a
pin-hole camera. The point of inversion is then the pin hole itself. So if Alice is standing up,
her image through the pin hole will be upside down. Finally, the allegory takes an even stranger
twist if allow Alice to be fully entangled with herself, but with a slowly time-dependent phase
factor φ1−4(t). While Alice is standing still, her image in the mirror will slowly rotate.

14. Conclusions

In this paper, a different approach to entanglement in spin 1/2 systems has been presented and
discussed. Central to our arguments is the method of images, which states that any entangled
state can be interpreted as a sum of a separable object wavefunction plus a portion of its own
inverse image. In particular, a generalized Bell state has been defined, which makes use of
the well-known SU(2) rotation operators D1/2(α′β ′γ ′). This procedure can be generalized to
three or more particles.

Special attention has been paid to the image entanglement of three-spin 1/2 particles. It
has been shown that this simple system exhibits complex behaviour, involving either exclusive
three-particle ν123 entanglement, or two-particle entanglement ν12, ν13, ν23, and/or mixtures
of all four. In all there are eight distinct image sub-classes, for real entanglement parameters.
Clearly, entanglement cannot be described and/or quantified in terms of a single parameter.
(See also Dür et al 2000, Acin et al 2000, 2001, Miyake 2003, Sugita 2008.)

In addition, it has been demonstrated that there is considerable scope for encoding numbers
in entangled pure states, both from quantum and classical points of view. In general, encrypting
numbers into a partially entangled three-spin 1/2 pure state, is a relatively straight forward
matter. One simply selects (i) the starting angles θ1, θ2, θ3, used to generate, the target
wavefunction: (α1, β1, α2, β2, α3, β3) and (ii) the entanglement factors ν12, ν13, ν23, ν (say the
encrypted numbers). These are subsequently used to generate the eight coefficients (a, b, . . . ,
h). However, computing the inverse, to unravel the above, is quite another matter. Numerical
methods appear to be mandatory. Two methods have been described. The first involves
solving a set of four coupled equations, to extract the entanglement factors ν12, ν13, ν23, ν.
However, this method requires the decoder to select approximate starting values for the four
entanglement factors ν12, ν13, ν23, ν. Many attempts might therefore be necessary. A second,
brute force method, the roulette method, has also been described. In practice, this procedure
works well if integer angles θ1, θ2, θ3 are used in the encoding process. But, if the sender
chooses to use transcendental values for θ1, θ2, θ3, the method rapidly turns into the Devil’s
roulette, requiring finer and finer angular steps.

Finally, we remark that although we have been primarily concerned with the n = 3 spin
1/2 system, many of the procedures outlined in this paper will find applications in entangled
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spin 1/2 states with n > 3. For example, if n = 4, 5 and 6 no-less than 11, 26 and 57 differing
but real entanglement factors, respectively, could be encoded into a single pure state. Indeed,
the development of new decoding algorithms may well prove to be essential, even for a simple
n = 4 spin 1/2 system.
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Appendix A. Two-spin 1/2 entanglement algorithm with complex numbers

Starting from the spin-up state
∣∣ 1

2

〉
, we generate a general object wavefunction:

|�〉O = D1/2(α′β ′γ ′)
∣∣ 1

2

〉
, (A.1)

where the rotation matrix for an active rotation is given by

D1/2(α′β ′γ ′) =
[

e−i(α′+γ ′)/2 cos
(

β ′
2

) −e−i(α′−γ ′)/2 sin
(

β ′
2

)
+ei(α′−γ ′)/2 sin

(
β ′
2

)
ei(α′+γ ′)/2 cos

(
β ′
2

)
]

. (A.2)

Thus

|�〉O = e−iγ ′/2

(
e−iα′/2 cos

(
β ′

2

) ∣∣∣∣12
〉

+ e+iα′/2 sin

(
β ′

2

) ∣∣∣∣−1

2

〉)

=
(

e−iα′/2α

∣∣∣∣12
〉

+ e+iα′/2β

∣∣∣∣−1

2

〉)
, (A.3)

where (i)

α = cos

(
β ′

2

)
, β = sin

(
β ′

2

)
, (A.4)

i.e. real quantities and (ii) we have dropped the overall phase factor e−iγ ′/2. Consequently, for
the complex version of the entanglement algorithm we write

|�〉O = 1√
1 + ν2

((α1 e−iφ(1)|+〉1 + β1 eiφ(1)|−〉1) ⊗ (α2 e−iφ(2)|+〉2 + β2 eiφ(2)|−〉2))

and

|�〉I = ν√
1 + ν2

((β1 e−iφ(1)|+〉1 − α1 eiφ(1)|−〉1) ⊗ (β2 e−iφ(2)|+〉2 − α2 eiφ(2)|−〉2)),

(A.5)

where (i) α1, β1, α2 and β2 are real quantities, and (ii) φ(1) = α′(1)/2 and φ(2) = α′(2)/2.
Thus

〈�O |�I 〉 = (α1β1 − β1α1)(α2β2 − β2α2) = 0 (A.6)

as required. Note also that the phases could be absorbed into the spin-up and spin-down
wavefunctions, leaving just real quantities α1, β1, α2, β2, as asserted in the text (see also Peres
1995a).

Finally, we observe that it would be possible to attach a further phase to the image function
|�〉I , in effect, making the entanglement parameter ν complex. For example consider the Bell
state:

|�〉 = (∣∣ 1
2

〉
1

∣∣ 1
2

〉
2 + ν e+iϕ

∣∣− 1
2

〉
1

∣∣− 1
2

〉
2

) /√
1 + ν2

= e+iϕ/2 (e−iϕ/2
∣∣ 1

2

〉
1

∣∣ 1
2

〉
2 + νe+iϕ/2

∣∣− 1
2

〉
1

∣∣− 1
2

〉
2

)√
1 + ν2. (A.7)
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On comparing equations (A.3) and (A.7), we conclude that the phase ϕ could be absorbed into
the either of the basis states

∣∣± 1
2

〉
1

∣∣± 1
2

〉
2, leaving the entanglement factor ν real, in accord with

the Schmidt decomposition. This trick however, does not work, in general, for the three-spin
1/2 problem (see appendices B and D).

Appendix B. Three-spin 1/2 entanglement algorithm with complex numbers

Consider the case where ν23 and ν123(= ν) are non-zero. We find

|�〉O = 1

η

×

⎧⎪⎪⎨
⎪⎪⎩

α1α2α3 ei(φ+(1)+φ+(2)+φ+(3))|+〉1|+〉2|+〉3 + α1α2β3 ei(φ+(1)+φ+(2)+φ−(3))|+〉1|+〉2|−〉3+
α1β2α3 ei(φ+(1)+φ−(2)+φ+(3))|+〉1|−〉2|+〉3 + α1β2β3 ei(φ+(1)+φ−(2)+φ−(3))|+〉1|−〉2|−〉3+
β1α2α3 ei(φ−(1)+φ+(2)+φ+(3))|−〉1|+〉2|+〉3 + β1α2β3 ei(φ−(1)+φ+(2)+φ−(3))|−〉1|+〉2|−〉3+
β1β2α3 ei(φ−(1)+φ−(2)+φ+(3))|−〉1|−〉2|+〉3 + β1β2β3 ei(φ−(1)+φ−(2)+φ−(3))|−〉1|−〉2|−〉3
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η
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−β1β2β3 ei(φ−(1)+φ+(2)+φ+(3))|−〉1|+〉2|+〉3 + β1β2α3 ei(φ−(1)+φ+(2)+φ−(3))|−〉1|+〉2|−〉3+
β1α2β3 ei(φ−(1)+φ−(2)+φ+(3))|−〉1|−〉2|+〉3 − β1α2α3 ei(φ−(1)+φ−(2)+φ−(3))|−〉1|−〉2|−〉3

⎫⎪⎪⎬
⎪⎪⎭

+
ν

η

⎧⎪⎪⎨
⎪⎪⎩

β1β2β3 ei(φ+(1)+φ+(2)+φ+(3))|+〉1|+〉2|+〉3 − β1β2α3 ei(φ+(1)+φ+(2)+φ−(3))|+〉1|+〉2|−〉3+
−β1α2β3 ei(φ+(1)+φ−(2)+φ+(3))|+〉1|−〉2|+〉3 + β1α2α3 ei(φ+(1)+φ−(2)+φ−(3))|+〉1|−〉2|−〉3+
−α1β2β3 ei(φ−(1)+φ+(2)+φ+(3))|−〉1|+〉2|+〉3 + α1β2α3 ei(φ−(1)+φ+(2)+φ−(3))|−〉1|+〉2|−〉3+
α1α2β3 ei(φ−(1)+φ−(2)+φ+(3))|−〉1|−〉2|+〉3 − α1α2α3 ei(φ−(1)+φ−(2)+φ−(3))|−〉1|−〉2|−〉3
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⎪⎪⎭

η2 = (1 + ν2
23 + ν2). (B.1)

Given that the initial state is of the form:

|�〉 = a eiφ+++ |+〉1|+〉2|+〉3 + b eiφ++− |+〉1|+〉1|−〉3 + c eiφ+−+ |+〉1|−〉2|+〉3 + d eiφ+−− |+〉1|−〉2|−〉3

+ e eiφ−++ |−〉1|+〉2|+〉3 + f eiφ−+−|−〉1|+〉1|−〉3 + g eiφ−−+ |−〉1|−〉2|+〉3

+ h eiφ−−− |−〉1|−〉2|−〉3. (B.2)

We find that

φ+++ = φ+(1) + φ+(2) + φ+(3) = − 1
2 (γ ′

1 + γ ′
2 + γ ′

3) + 1
2 (−α′

1 − α′
2 − α′
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2 (−α′
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2 + α′

3),
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3) + 1
2 (−α′

1 + α′
2 − α′

3),

φ+−− = φ+(1) + φ−(2) + φ−(3) = − 1
2 (γ ′
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2 + γ ′

3) + 1
2 (−α′
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2 (γ ′

1 + γ ′
2 + γ ′

3) + 1
2 (+α′

1 − α′
2 + α′

3),

φ−−+ = φ−(1) + φ−(2) + φ+(3) = − 1
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(B.3)
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Again, we can never hope to recover the overall phase (γ ′
1 + γ ′

2 + γ ′
3) which is common to

all coefficients. However, given the eight complex coefficients (a–h), we can recover the
individual phases (α′

1, α
′
2, α

′
3). For example we find

φ+++ − φ++− = −α′
3,

φ+−+ − φ+−− = −α′
3,

φ−++ − φ−+− = −α′
3,

φ−−+ − φ−−− = −α′
3.

(B.4)

So not only can we recover the (α′
1, α

′
2, α

′
3), we can also check for self-consistency.

Appendix C. Conjunct entangled states

Consider the general entangled image state:

|�〉 = 1

η
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)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

η =
√

1 + ν2
12 + ν2

13 + ν2
23 + ν2

123.

(C.1)

We define the conjunct state to equation (C.1) as

|�C〉 = 1

η
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(C.2)

Note that |�〉 and |�C〉 are identical except for the change of sign of the tri-partite entanglement
parameter ν123.

If we now form the concurrence Cc
123 = 〈�π(123)|�C〉 we find

Cc
123 = 〈�π(123)|�C〉 = 2ν123√

1 + ν2
12 + ν2

13 + ν2
23 + ν2

123

. (C.3)

Thus, it is possible to directly project out the entanglement factor ν123, but only if both the
entangled |�〉 and its conjunct state |�C〉 are available. This argument can be extended to
higher numbers of odd numbered spins.
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Appendix D. Complex entanglement factors

In appendix A, it was shown that if a phase was attached to the bi-partite entanglement factor
ν, it could be absorbed into the basis states, rendering ν positive semi-definite in accord with
the Schmidt decomposition. It is therefore reasonable to ask whether or not similar absorption
can be exploited in three-spin 1/2 systems.

Consider the general image-entangled state:

|�〉 = |+ + +〉 + ν12 eiϕ12 |− − +〉 + ν13 eiϕ13 |− + −〉 + ν23 eiϕ13 |+ − −〉 + ν123 eiϕ123 |− − −〉.
(D.1)

Here we have used |+ + +〉 as the target (object) function.
Next, imagine that we wish to associate a given phase with each qubit i.e.

|ψ(+)〉1 = |+〉1 e−iφ1 , |ψ(−)〉1 = |−〉1 e+iφ1 etc (D.2)

see, for example equation (A.3). The equivalent of equation (D.1) therefore takes the form:

|�〉 = |+ + +〉 e−i(φ1+φ2+φ3) + ν12 ei(φ1+φ2−φ3)|− − +〉 + ν13 ei(φ1−φ2+φ3)|− + −〉
+ ν23 ei(−φ1+φ2+φ3)|+ − −〉 + ν123 e+i(φ1+φ2+φ3)|− − −〉. (D.3)

Or alternatively

e+i(φ1+φ2+φ3)|�〉 = |+ + +〉 + ν12 ei(2φ1+2φ2)|− − +〉 + ν13 ei(2φ1+2φ3)|− + −〉
+ ν23 ei(2φ2+2φ3)|+ − −〉 + ν123 e+i2(φ1+φ2+φ3)|− − −〉. (D.4)

If we ignore the triple-entanglement term, a solution can be obtained for φ1, φ2 and φ3.
Explicitly,

φ1 = 1
4 (ϕ12 + ϕ13 − ϕ23),

φ2 = 1
4 (ϕ12 − ϕ13 + ϕ23),

φ3 = 1
4 (−ϕ12 + ϕ13 + ϕ23).

(D.5)

We conclude therefore that for bi-partite entanglement, associated phases can be incorporated
into the basis sets. Consequently, in minimalistic form:

|�〉 = |+ + +〉 + ν12|− − +〉 + ν13|− + −〉 + ν23|+ − −〉 + ν123 eiϕ123 |− − −〉, (D.6)

i.e. a total of five entanglement parameters (ν12, ν13, ν23, ν123 and ϕ123). This number is in
agreement with Acin et al (2000, 2001) who reached the same conclusion, via an entirely
different route. Note that (i) equation (1) of Acin et al (2001) is similar too, but not
identical with that of equation (D.6), (ii) no matter what choice of parameters is made equation
(D.6) cannot be factorized (some two-particle or three-particle entanglement always exists).
However this is not the case for equation (10) of Acin et al (2000) and equation (1) of Acin
et al (2001).

Finally, we note the following. First, equation (D.6) is not unique, in that we could have
used a different target state. However, the conclusions are independent of the target state.
Second, on generalizing the above discussion to n-spins, it can be shown that it is only ever
possible to absorb n entanglement phases into the basis states, in accord with table 2. Third,
for two particles (regardless of spin) we are guaranteed by the singular value decomposition
theorem (e.g. Paškauskas and You 2001) that any entanglement phases can be absorbed into
the basis set. But this is not the case for three or more particles.
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